解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。換元的方法有:局部換元、三角換元、均值換元等。
例題:2008年江西省行測(cè)真題
數(shù)學(xué)思想剖析:方程法和換元法數(shù)學(xué)思想依據(jù)是函數(shù)與方程思想。函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題。函數(shù)思想以函數(shù)知識(shí)做基石,用運(yùn)動(dòng)變化的觀點(diǎn)分析和研究數(shù)學(xué)對(duì)象間的數(shù)量關(guān)系,使函數(shù)知識(shí)的應(yīng)用得到極大的擴(kuò)展,豐富并優(yōu)化了數(shù)學(xué)解題活動(dòng),給數(shù)學(xué)解題帶來(lái)一股很強(qiáng)的創(chuàng)新能力。方程思想是從問(wèn)題的數(shù)量關(guān)系出發(fā),運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題中的條件轉(zhuǎn)化為方程、不等式或它們的混合組,通過(guò)解方程(組)、不等式(組)或其混合組使問(wèn)題獲解。函數(shù)思想與方程思想的聯(lián)系十分密切,而且函數(shù)與方程思想在數(shù)學(xué)解題中可以互化互換,豐富了數(shù)學(xué)解題的思想寶庫(kù)。常用的方法有方程組法和換元法。