當(dāng)前位置:首頁(yè) > 私立學(xué)校 > 中小學(xué)基礎(chǔ)教育 > 奧數(shù)試題
大家都在關(guān)注:19年7月國(guó)際學(xué)校開(kāi)放日全國(guó)優(yōu)質(zhì)國(guó)際高中國(guó)際初中國(guó)際小學(xué)推薦
在多元智能大賽的決賽中只有三道題。已知:(1)某校25名學(xué)生參加競(jìng)賽,每個(gè)學(xué)生至少解出一道題;(2)在所有沒(méi)有解出第一題的學(xué)生中,解出第二題的人數(shù)是解出第三題的人數(shù)的2倍:(3)只解出第一題的學(xué)生比余下的學(xué)生中解出第一題的人數(shù)多1人;(4)只解出一道題的學(xué)生中,有一半沒(méi)有解出第一題,那么只解出第二題的學(xué)生人數(shù)是( )
解答:根據(jù)"每個(gè)人至少答出三題中的一道題"可知答題情況分為7類(lèi):只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設(shè)各類(lèi)的人數(shù)為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然后將④⑤⑥代入①中,整理得到
a2×4+a3=26
由于a2、a3均表示人數(shù),可以求出它們的整數(shù)解:
當(dāng)a2=6、5、4、3、2、1時(shí),a3=2、6、10、14、18、22
又根據(jù)a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2.
然后可以推出a1=8,a12+a13+a123=7,a23=2,總?cè)藬?shù)=8+6+2+7+2=25,檢驗(yàn)所有條件均符。
故只解出第二題的學(xué)生人數(shù)a2=6人。
入學(xué)幫助熱線:400-805-3685010-51268841
咨詢熱線:010-51268841
國(guó)際學(xué)校擇校
我要給孩子
報(bào)學(xué)校