大家都在關注:19年7月國際學校開放日全國優(yōu)質(zhì)國際高中國際初中國際小學推薦
三年級的奧數(shù)學習是小學奧數(shù)最重要的基礎階段,只有牢固掌握了三年級奧數(shù)最基本的知識技巧,才能有效的促進今后的數(shù)學學習,最終在競賽、仁華以及小升初中有所斬獲。
專家給您以下建議:
1、計算是基礎,基礎要打牢:“華數(shù)”三年級課本系統(tǒng)的介紹了四則運算及其巧算,關于數(shù)的計算是比較枯燥的內(nèi)容,但它同時也是學好奧數(shù)的基礎,是歷次競賽或選拔比賽中都必不可少的組成部分。就我校各位老師教學經(jīng)驗表明,在二、三年級打下良好運算基礎的同學,一方面使得學生今后的數(shù)學學習更加輕松,另一方面,在高年級競賽或選拔中往往會有相當大的優(yōu)勢。
2、應用題,重中之重:從三年級起,“華數(shù)”課本中介紹了大量的奧數(shù)專題知識,尤其是上、下冊中的應用題部分,是所有年級所有競賽考試中必考的重點知識。學生一定要在各個應用題專題學習的初期打下良好的基礎。現(xiàn)在許多五六年級同學奧數(shù)水平提高非常困難,就是因為他們?nèi)昙壍膴W數(shù)專題知識掌握的不牢靠。
3、學習方法很重要:在學習計算的基礎上,三年級逐步引入了基本應用題,簡單圖形問題等奧數(shù)知識,面對突然增大的奧數(shù)信息量,學生可以有意識的培養(yǎng)自己復習,總結等良好的學習習慣;同時,三年級是學生培養(yǎng)自己的奧數(shù)學習方法的最好時間。在三年級接觸學習大量奧數(shù)知識的前提下,有意識地培養(yǎng)自己的學習方法對今后的奧數(shù)學習有非常重要的幫助。
4、競賽、仁華、重點學校培訓班,不能放過:三年級時走進美妙數(shù)學花園、數(shù)學解題能力展示活動(即以前的“迎春杯”)等競賽逐步啟動。盡早參加數(shù)學競賽能夠輔助孩子開闊眼界,拓展思維。另外熟悉比賽題型,為五、六年級在重要競賽中獲獎無疑打下了很好的基礎。而且較早進入重點中學培訓班(包括仁華)也可以讓孩子占據(jù)有利地位。
♦學習重點難點解析:
三年級屬于奧數(shù)學習打基礎階段,孩子進入三年級以后,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力相比于一、二年級有很大的提高,這個時期是奧數(shù)思維形成的關鍵時期,是學奧數(shù)的黃金時段,所以能否把握住三年級這一黃金時段,關系到以后小升初的成與敗。下面就簡要介紹一下三年級下學期學習的關鍵知識點。
1.運用運算定律及性質(zhì)速算與巧算
計算是數(shù)學學習的基本知識,也是學好奧數(shù)的基礎。能否又快又準的算出答案,是歷年數(shù)學競賽考察的一個基本點。在三年級,主要學習了加法與乘法運算定律,其中應用乘法分配率是競賽中考察巧算的一大重點;除此之外,競賽中還時?疾鞄Х“搬家”與添括號/去括號這兩種通過改變運算順序進而簡便運算的思路。例如:17×5+17×7+13×5+13×7
問題解析:由于四個加項沒有公共的乘數(shù),不能直接應用乘法分配率?梢钥紤]先分組應用乘法分配率,在觀察的思路,原式=(17×5+17×7)+(13×5+13×7)
=17×(5+7)+13×(5+7)=17×12+13×12=(17+13)×12=30×12=360
2.學習假設思想解決雞兔同籠問題
雞兔同籠問題源于我國1500年前左右的偉大數(shù)學著作《孫子算經(jīng)》,其中記載的31題,“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”翻譯成現(xiàn)代文就是說有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳。求籠中各有幾只雞和兔?
問題解析:我們知道每只雞2只腳,每只兔子4只腳,我們不妨假設籠子里面只有雞,那么應該有只腳,而事實上有94只腳,原因就是我們把一部分兔子假設成了雞。
我們知道,每只兔子比雞多2只腳,那么一共應該有只兔子,剩下了 35 – 12 = 23 只雞。
對于一般的雞兔同籠問題,我們有
雞數(shù)=(兔的腳數(shù) 總頭數(shù) – 總腳數(shù))(兔的腳數(shù) - 雞的腳數(shù))
兔數(shù)=(總腳數(shù) - 雞的腳數(shù) 總頭數(shù) )(兔的腳數(shù) - 雞的腳數(shù))
3.平均數(shù)應用題
“平均數(shù)”這個數(shù)學概念在同學們的日常學習和生活中經(jīng)常用到。例如,三年級上學期期末考完試,可以計算全班同學的數(shù)學“平均成績”,同學與爸爸媽媽三個人的“平均年齡”等等,都是我們經(jīng)常碰到的求平均數(shù)的問題。根據(jù)我們所舉的例子,可以總結出求平均數(shù)的一般公式:總數(shù)和÷人數(shù)(或個數(shù))=平均數(shù)。比如說人大附小三年級(一)班第2小組5名同學上學期期末數(shù)學成績分別是93,95,98,97,90,那么第2小組5名同學的數(shù)學平均分是多少呢?
問題解析:根據(jù)我們總結的公式,首先可以求出第2小組5名同學數(shù)學的總分一共是93+95+98+97+92=475,所以他們的平均分是475÷5=95(分)。
4.和差倍應用題
和差倍問題是由和差問題、和倍問題、差倍問題三類問題組成的。和倍問題是已知大小兩個數(shù)的和與它們的倍數(shù)關系,求大小兩個數(shù)的應用題,一般可應用公式:數(shù)量和÷對應的倍數(shù)和=“1”倍量;差倍問題就是已知大小兩個數(shù)的差和它們的倍數(shù)關系,求大小兩個數(shù)的應用題,一般可應用公式:數(shù)量差÷對應的倍數(shù)差=“1”倍量;和差問題是已知大小兩個數(shù)的和與兩個數(shù)的差,求大小兩個數(shù)的應用題一般可應用公式:大數(shù)=(數(shù)量和+數(shù)量差)÷2,小數(shù)=(數(shù)量和-數(shù)量差)÷2。為了幫助我們理解題意,弄清題目中兩種量彼此間的關系,常采用畫線段圖的方法以線段的相對長度來表示兩種量間的關系,以便于找到解題的途徑。
5.年齡問題
基本的年齡問題可以說是和差倍問題生活化的典型應用。同時,年齡問題也有其鮮明的特點:任何兩個人之間的年齡差保持不變。解決年齡問題,關鍵就是要抓住以上兩點。例如:哥哥兩年后的年齡是弟弟年齡的2倍,今年哥哥比弟弟大5歲,那么今年弟弟多少歲?
問題解析:由于兩人之間的年齡差不變,在2年之后哥哥仍然比弟弟大5歲,那時哥哥是弟弟年齡的2倍,這就變成了一道差倍問題,也就是說弟弟的年齡在2年后是5÷(2-1)=5(歲),所以今年弟弟5-2=3(歲)。
入學幫助熱線:400-805-3685010-51268841
咨詢熱線:010-51268841
國際學校擇校
我要給孩子
報學校