當(dāng)前位置:首頁 > 私立學(xué)校 > 初中/中考 > 初中數(shù)學(xué)
大家都在關(guān)注:19年7月國際學(xué)校開放日全國優(yōu)質(zhì)國際高中國際初中國際小學(xué)推薦
第四章 直線形
★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1。線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。
2。線段的中點及表示
3。直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4。兩點間的距離(三個距離:點-點;點-線;線-線)
5。角(平角、周角、直角、銳角、鈍角)
6。互為余角、互為補角及表示方法
7。角的平分線及其表示
8。垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9。對頂角及性質(zhì)
10。平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11。常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12。定義、命題、命題的組成
13。公理、定理
14。逆命題
二、三角形
分類:⑴按邊分;⑵按角分
1。定義(包括內(nèi)、外角)
2。三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,
3。三角形的主要線段
討論:①定義②××線的交點—三角形的×心③性質(zhì)
、俑呔②中線③角平分線④中垂線⑤中位線
、乓话闳切微铺厥馊切危褐苯侨切、等腰三角形、等邊三角形
4。特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5。全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6。三角形的面積
、乓话阌嬎愎舰菩再|(zhì):等底等高的三角形面積相等。
7。重要輔助線
#P#
⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8。證明方法
⑴直接證法:綜合法、分析法
⑵間接證法—反證法:①反設(shè)②歸謬③結(jié)論
、亲C線段相等、角相等常通過證三角形全等
⑷證線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來
三、四邊形
分類表:
1。一般性質(zhì)(角)
⑴內(nèi)角和:360°
、祈槾芜B結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。
、峭饨呛停360°
2。特殊四邊形
、叛芯克鼈兊囊话惴椒ǎ
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
⑷對角線的紐帶作用:
3。對稱圖形
、泡S對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4。有關(guān)定理:①平行線等分線段定理及其推論1、2
、谌切巍⑻菪蔚闹形痪定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5。重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。
6。作圖:任意等分線段。
四、應(yīng)用舉例
學(xué)大教育小升初英語1對1個性輔導(dǎo),短期培訓(xùn)效果好,咨詢電話:400-059-4258
入學(xué)幫助熱線:400-805-3685010-51268841
咨詢熱線:010-51268841
國際學(xué)校擇校
我要給孩子
報學(xué)校