一、特值法
顧名思義,特值法就是找一些符合題目要求的特殊條件解題。
例:f(n)=(n+1)^n-1(n為自然數(shù)且n>1),則f(n)
(A)只能被n整除 (B)能被n^2整除 (C)能被n^3整除 (D)能被(n+1)整除 (E)A、B、C、D均不正確
解答:令n=2和3,即可立即發(fā)現(xiàn)f(2)=8,f(3)=63,于是知A、C、D均錯誤,而對于目前五選一的題型,E大多情況下都是為了湊五個選項而來的,所以,一般可以不考慮E,所以,馬上就可以得出答案為B。
例:在等差數(shù)列{an}中,公差d≠0,且a1、a3、a9成等比數(shù)列,則(a1+a3+a9)/(a2+a4+a10)等于
(A)13/16 (B)7/8 (C)11/16 (D)-13/16 (E)A、B、C、D均不正確
解答:取自然數(shù)列,則所求為(1+3+9)/(2+4+10),選A。
例:C(1,n)+3C(2,n)+3^2C(3,n)+……+3^(n-1)C(n,n)等于
(A)4^n (B)3*4^n (C)1/3*(4^n-1) (D)4^n/3-1 (E)A、B、C、D均不正確
解答:令n=1,則原式=1,對應下面答案為D。
例:已知abc=1,則a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)等于
(A)1 (B)2 (C)3/2 (D)2/3 (E)A、B、C、D均不正確
解答:令a=b=c=1,得結(jié)果為1,故選A。
例:已知A為n階方陣,A^5=0,E為同階單位陣,則
(A)|A|>0 (B)|A|<0 (C)|E-A|=0 (D)|E-A|≠0 (E)A、B、C、D均不正確
解答:令A=0(即零矩陣),馬上可知A、B、C皆錯,故選D。
二、代入法
代入法,即從選項入手,代入已知的條件中解題。
例:線性方程組
x1+x2+λx3=4
-x1+λx2+x3=λ^2
x1-x2+2x3=-4
有解
(1)λ≠-1 (2)λ≠4
解答:對含參數(shù)的矩陣進行初等行變換難免有些復雜,而且容易出錯,如果直接把下面的值代入方程,判斷是否滿足有解,就要方便得多。答案是選C。
例:不等式5≤|x^2-4|≤x+2成立
(1)|x|>2 (2)x<3
解答:不需要解不等式,而是將條件(1)、(2)中找一個值x=2.5,會馬上發(fā)現(xiàn)不等式是不成立的,所以選E。
例:行列式
1 0 x 1
0 1 1 x =0
1 x 0 1
x 1 1 0
(1)x=±2 (2)x=0
解答:直接把條件(1)、(2)代入題目,可發(fā)現(xiàn)結(jié)論均成立,所以選D。
相關推薦:
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責任;
②部分稿件來源于網(wǎng)絡,如有侵權(quán),請聯(lián)系我們溝通解決。
評論0
“無需登錄,可直接評論...”