線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,復(fù)習(xí)時(shí)應(yīng)當(dāng)常問(wèn)自己做得對(duì)不對(duì)?再問(wèn)做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開(kāi)闊了。
例如:設(shè)A是m×n矩陣,B是n×s矩陣,且AB=0,那么用分塊矩陣可知B的列向量都是齊次方程組Ax=0的解,再根據(jù)基礎(chǔ)解系的理論以及矩陣的秩與向量組秩的關(guān)系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n進(jìn)而可求矩陣A或B中的一些參數(shù)。再如,若A是n階矩陣可以相似對(duì)角化,那么,用分塊矩陣處理P-1AP=∧可知A有n個(gè)線性無(wú)關(guān)的特征向量,P就是由A的線性無(wú)關(guān)的特征向量所構(gòu)成,再由特征向量與基礎(chǔ)解系間的聯(lián)系可知此時(shí)若λi是ni重特征值,則齊次方程組(λiE-A)x=0的基礎(chǔ)解系由ni個(gè)解向量組成,進(jìn)而可知秩r(λiE-A)=n-ni,那么,如果A不能相似對(duì)角化,則A的特征值必有重根且有特征值λi使秩r(λiE-A)
又比如,對(duì)于n階行列式我們知道:若|A|=0,則Ax=0必有非零解,而Ax=b沒(méi)有惟一解(可能有無(wú)窮多解,也可能無(wú)解),而當(dāng)|A|≠0時(shí),可用克萊姆法則求Ax=b的惟一解;可用|A|證明矩陣A是否可逆,并在可逆時(shí)通過(guò)伴隨矩陣來(lái)求A-1;對(duì)于n個(gè)n維向量α1,α2,…αn可以利用行列式|A|=|α1α2…αn|是否為零來(lái)判斷向量組的線性相關(guān)性;矩陣A的秩r(A)是用A中非零子式的比較高階數(shù)來(lái)定義的,若r(A)
凡此種種,正是因?yàn)榫性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬(wàn)縷的聯(lián)系,代數(shù)題的綜合性與靈活性就較大,同學(xué)們整理時(shí)要注重串聯(lián)、銜接與轉(zhuǎn)換。
「編者按」對(duì)待考研數(shù)學(xué),在掌握了相關(guān)概念和理論之后,首先應(yīng)該自己試著去解題,即使做不出來(lái),對(duì)基本概念和理論的理解也會(huì)深入一步。因?yàn)閿?shù)學(xué)畢竟是個(gè)理解加運(yùn)用的科目,不練習(xí)就永遠(yuǎn)無(wú)法熟練掌握。解不出來(lái),再看書(shū)上的解題思路和指導(dǎo),再想想,如果還是想不出來(lái),比較后再看書(shū)上的詳細(xì)解答。看一道題怎么做出來(lái)不是比較重要的東西,重要的是通過(guò)你自己的理解,能夠在做題的過(guò)程中用到它。因此,在看完例題之后,切莫忘記要好好選兩道習(xí)題來(lái)鞏固一下。不要因一些難題貶低自己的自信心。
特別聲明:①凡本網(wǎng)注明稿件來(lái)源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來(lái)源:育路網(wǎng)",違者將依法追究責(zé)任;
②部分稿件來(lái)源于網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系我們溝通解決。
25人覺(jué)得有用
18
2011.07
線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過(guò)證明題可以了解考生對(duì)數(shù)學(xué)主要原理、定理的理解與掌......
18
2011.07
對(duì)于考研數(shù)學(xué):首先不贊成題海戰(zhàn)術(shù),數(shù)學(xué)更強(qiáng)調(diào)的是數(shù)學(xué)基礎(chǔ),即對(duì)基本概念,定理的把握,這不只是......
18
2011.07
考研數(shù)學(xué)第一階段復(fù)習(xí)完后,就是9月到11月中的第二輪復(fù)習(xí),查漏補(bǔ)缺。這不是一個(gè)簡(jiǎn)單的重復(fù)過(guò)程。......
18
2011.07
......
18
2011.07
......
18
2011.07
......